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The cylindrical plasma expansion in a axially symmetric magnetic field is calculated 
with a magnetohydrodynamic code described herein, 

The hydrodynamic and electromagnetic variables are decoupled and computed 
separately with explicit methods. 

A two step Lax-Wendroff method is used for the hydrodynamic equations and a 
splitting technique applied to the vector potential for the field components. 

INTRODUCTION 

This paper deals with the numerical computation of a cylindrical plasma 
expansion in a nonuniform axially symmetric magnetic field so that the plasma 
variables only depend on r and z directions. 

This plasma can be either a laser produced plasma confined by a magnetic field 
or a plasma trapped in the earth magnetic fields or yet a star in expansion in the 
vacuum. 

A number of analytical solutions of plasma interaction with a magnetic field in 
one and two dimensions are available throughout the literature. 

Some of these works concern spherical and elliptical plasmoids [l-4] other ones 
cylindrical plasma columns with cylindrical or elliptical cross-sections [5]. 

None of these works have been able to give a complete solution of the problem 
including all transport effects. This has naturally led to a numerical approach of 
the problem. One-dimensional codes have been first developed in spherical and 
cylindrical coordinates [6-9,21,23] and more recently numerical results concerning 
two-dimensional codes have been published by J. Killeen and J. R. Freeman 
et al. [6, 10, Ill. 

The study presented here mainly differs from the results of J. Killeen and 
J. R. Freeman et al. by the model chosen and the way by which this problem has 
been numerically solved. A one fluid magnetohydrodynamic model is used, the 
calculation being initiated during the laser irradiation of the pellet so that plasma 
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heating and ionization are taken into account. Charge neutrality and collision- 
dominance are assumed in this study. All transport effects such as: resistivity, 
viscosity, and conductibility are included in the calculation. 

FORMULATION 

The MHD equations are discussed in detail in two books [12, 131. These equa- 
tions written in Eulerian conservative form with source terms are 

~(pV)+v*[K+P-TT,-RRJ=O, 

P-R) V+S-Q] = E,, 

(1) 

representing the conservation of mass, momentum and energy. Where p, z), e are 
respectively the density, velocity, and the internal energy per unit mass. In dyadic 
notation, the remaining quantities are 

E=pe+ipuB+c 
3% 

K = pvv, 

P = pII Q = TFVT, 

R=+‘I/+(VY)‘]-+VVVII, 

S=;(E”B) TM = i BB - r B211, 
2/h 

E+VAB=~J+%[JAB-V~~], 

(2) 

where K, P, R, T stand for the kinetic, pressure, viscous, and magnetic stress 
tensors. While Q, S, V are respectively the heat flux, electromagnetic energy, and 
velocity vectors, with rr as the tensor of conductibility and K the coefficient of 
shear viscosity. For an isotropic monoatomic, ideal gas, we have the relations 

p=mN p = NkT P pe = - 
Y---l 

The field components are calculated from the B component of the vector potential 
rather from the generalized Ohm’s law. In this study the term [JAB - VP,] has 
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no 0 component so that the 0 component of the vector potential in the plasma is 
given by the simple equation: 

aA 
- 2 dA + V,(V,A). 

at - /Lo 

In the vacuum we have to solve a Laplace like equation: 

a ia 
dA=a,;a,rA+T= . 

a2A 0 
(4) 

At the plasma-vacuum interface we did use the boundary condition: [E] = 0 
where the brackets mean a jump of the quantity through the interface. The field 
components are then obtained everywhere on the mesh by the relations 

B = V,A and E= -$ (5) 

NUMERICAL SCHEME 

The hydrodynamic equations (1) written in a conservative form can be represen- 
ted in a symbolic form 

g + V . F(U) = W, (6) 

where W is the source term. 
For cylindrical coordinates with axial symmetry, this equation can be written 

in the different forms depending on r: 

(U)+$G(U)+$Z(U)= W r=O, 

rF(U)+;G(U)+;H(U)= W 

(7) 
r 2 dr, 

where F(U), G(U), and H(U) stand for the r- and z-components of the developed 
equations described in (1). 

For such a system, we use the well known two-step Lax-Wendroff method 
[14, p. 3611 which is given by the finite difference scheme 
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This explicit scheme involves the calculation of U, F, G, H, W on a nine-point 
molecule as shown in Fig. 1. 

FIG. 1. Computational molecule and plasma configuration at time zero. 

Provisional values on the four cross-points are first calculated at time IZ + 1 
with Eq. (8) and the final value at time n + 2 are then obtained from Eq. (9). 

The stability condition for a two-Cartesian coordinate scheme was given by 
Richtmeyer and IL W. Morton [14] and was used as an indication in this study 

(v+c)$<-& with Ar = AZ, 

where V and C are the fluid and magnetosonic velocities given by 

v = (V,Z + VzZ)1/2 and c = (Cs2 + CA2)l/2, (11) 

with C, and C, as the sound and Alfven speeds given by the relations 

CT = (2g2 and CA = ( B;0-$2 )lj2. 

The stability condition (10) is calculated and should be verified everywhere in 
the plasma. As shown by Eq. (12), low densities can lead to high Alfven speeds and 
therefore to a small and indesirable timestep for insuring stability. So a minimum 
density IGin is chosen as small as possible in order to give an acceptable timestep. 
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During the calculation the density N is compared to Nmin , if N 3 Nmin we are 
in the plasma, otherwise we are in the vacuum. This test defines the boundary of 
the plasma-vacuum interface which is arbitrary located on the last point calculated. 
Then all hydrodynamic variables are set equal to zero in the vacuum. There is 
another approach [6] which consists to suppose the presence of a background 
plasma throughout the mesh, this approach is less physical and by so doing we 
create a shock at the boundary. In this case the variables calculated by the Eqs. (I) 
are no longer conserved. 

From a mathematical point of view we suppose that the components: F(U), 
G(U), and H(U) of Eq. (7) vary continuously across the plasma-vacuum interface: 
the hydrodynamic variables decreasing and the field components increasing across 
the boundary so that the result of these two compensating effects is smooth and 
continuous enough to allow the use of the numerical scheme (8) and (9) at the 
interface. 

As suggested by Potter et al. [15, pp. 399 and 161 the viscosity and conductibility 
terms are introduced at the second step of the scheme. 

The tensor of conductibility lY’ and the coefficient of schear viscosity K are 
calculated at time it + 1 on the four cross points (Fig. 1) and the derivatives are 
then computed at time n with finite differences centered on the cross points. The 
introduction of diffusion terms in the schemes (8) and (9) can make the equations 
more parabolic than hyperbolic depending on the value of the coefficients of ditIu- 
sion, leading to a more severe stability condition than condition (10). The stability 
condition for a parabolic equation will be studied’ later for the calculus of the 
vector potential. 

The fiels components: Br, Bz, E8 are obtained from the component Al,, of the 
vector potential as follows: 

B n+1 _ L W,f,:1 - 4%,1, rz,m - - 2 dr 

B n+1 _ 
zz,m - & h+,AlY% - ~~-1~~%,,1, 

E n+1 _ -!- [A;;’ - Arm]. ~1,978 - - At 

(13) 

The field components are thus computed everywhere on the mesh. 
In the plasma, the vector potential A has to be calculated from the parabolic 

equation 

aA rl 
[ 

a$A -=- 
at 

alarA+- 
p. ar r ar 1 -vLA.rA-vaA 

’ r ar = a.2 - (14) 
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We make use of a splitting technique (17) which is second order accurate where 
each term is treated by the Lax-Wendroff method. We have 

We split the operator 2 into two operators Zr and 6p, such that 

(1% 

(16) 

(17) 

with the finite difference operators defined by 

9, = a P - b Bp - c TT2 = (b2 - 2ac) S2 + 2bc Sp + c2, 

9z=a862-ddsp 22 = d2 62 z > (18) 

a = r)ho b = V, - a/r ++a 
r2 

d= V,, 

where 6 and 8~ stand for the finite difference operators 

&A(x) = [A(x + l/2) - A(x - 1/2)]/dx, 

82p2A(x) = [A(x + 1) - A(x - 1)]/2 Ax. 
(19) 

The stability of this scheme is obtained by insuring the stability of each equa- 
tion (16) and (17). A Fourier analysis of the parabolic equation 

aA asA 
at=a-- bx-cA 

i?X 

gives the following amplification factor j3 

1 /I(a = (1 - 2C + A cos a)” + 4B2 sin2 01 < 1, 

with 

(20) 

(21) 

A= [--&-+$($-ac)]& 

B=;(l -hc$, 

C= A+,$(1 -hi)%. 
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For insuring stability, the following conditions should be satisfied: 

O<C+A<l and O<C-A<1 
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(22) 

and either 

4A2 < 4B2 < x 
C+A Or 12BI < I2A/, 

when c = 0 for the z-direction, we have the more simple conditions 

4B2 < I 2A 1 < j 2B 1 < 1 or 12Bj <12AI <l. 

Since the coefficients a, b, c are nonconstant, these stability conditions are local. 
These coefficients are calculated at each timestep II on the points and interpolated 
on the crosses (Fig. 1). 

We can now calculate the vector potential A in the vacuum at times n + 1 and 
n + 2 by solving the Laplace’s equation 

(23) 

We use an iterative method, the successive over relaxation method of Tchevycheff 
(SORT) described by Hackney [ 15, p. 1671 which has been extended to cylindrical 
coordinates. This method defines new values Ap+l from old ones Ap with the 
iterative equation 

A 9+1 _ 
I.+% - $ [&‘,?-I + (1 - PI A!‘-:‘,m + (1 + PI AR,,, + &.m+J 

+ (1 - w”“) Acm (24) 

with 

a = 4 (1 + /32) and p = l/2 (I - 1). 

The SORT process consists of sweeping a iV x P mesh with this equation point 
by point on points for which I + m is odd during one iteration and then on all 
I+ m even points during the next one. 

Where the over relaxation parameter w  p+l is changed every iteration according 
to the following scheme: 

coo = 1 fJ = l/(1 - $+2) 0Pfl = l/(1 - &..A”) for p 2 1, (25) 

with 

P = 1 - 4((Y2/N3 + (~“/P2)> and y = 3.831, 7i- = 3.141. 
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This operation is repeated for p = 0, 1, 2,..., until convergence has been 
obtained. This is practically done for 20 iterations. The old values of A (p = 0) 
are used to start the iteration. 

We should define the position of the boundary and the values of A on it in order 
to solve this iterative scheme. We know that the boundary is located between two 
successive points of the numerical scheme (8) (9) separated by an interval 2dr or 
242, moreover the field components in the last points calculated in the plasma 
region are obtained by the relations (13) and computed with mean odd central 
differences so that the points (I, m + 1) and (I + 1, m) should belong to the plasma- 
vacuum interface and serve as boundary conditions for the vacuum equation (4). 

After calculation of the vector potential in the plasma, the values of A on 
the boundary are computed from the relations: 

E” - E[m or Ii1.m - 

where u and p respectively mean: vacuum and plasma. These relations imply the 
continuity of E. through the boundary. 

NUMERICAL MODEL 

The initial values of the MHD variables must be specified everywhere on the 
mesh in order to begin the calculation. In the plasma, the hydrodynamic variables 
are 

N I,m = N, exp - a[(l - 1)2 + (m - 1)2]1/2, 

(27) 

V;,w = V,(1- 1) Vf,, = V,(m - 1) Tt,m = T,, . 

The particle and energy source terms are 

E& = E, W”D& m) NT,, = N,W”D,(I, m). (28) 

The terms Wn and D(l, m) stand for the time source term and the Dirac’s func- 
tion. 

The source term for a Gauss shape pulse laser is given by the relation 

W* = [l + erf ~~~~2 ]/2 with t = ndt. 

The Dirac’s function is defined by the simple relation 

D(l, m) = I/MV. (30) 
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Where M and V are respectively the number of points taken into account for 
calculated D (1, m) and the volume of each mesh cell centered on 1. 

The program has been designed to use any analytical source terms one can 
provide. However these source terms have been chosen on a mathematical ground 
rather than on a physical ground in order to check the two step Lax-Wendroff 
method (8) and (9) with source terms. 

The energy and the number of particle computed with the numerical scheme (8) 
and (9) are first summed on the mesh and then on the time, and finally plotted on 
graphs (8) and (10). In this case it is an easy matter to check the results with the 
theoretical energy and particle number given by the integral relations 

EnAt = E, + E, 

(31) 
NnAt = No + N, 

A mirror magnetic field is used and is defined by the relations 

B, = -aA,l&3r) sin (pz), 

& = AoIl - ~~o(Pr> ~0s @WI, 
A0 = A,[r/2 - I,@r) cos (pz)]. 

(32) 

Where IO and I1 are modified Bessel functions of the first kind and CX, /3, A, are 
given constants. 

The transport coefficients are given by Spitzer [18] and can be written in the 
form: 

v = ~oT3/2 resistivity, 

yI = yoT5i2 transverse conductibility, 

~11 = ylT512 parallel conductibility, (33) 

K = IC,T~/~ shear viscosity. 

For insuring a proper conservation of the quantities UC;2 calculated with the 
conservative scheme (8) and (9) we have to set to zero the flux of the variables 
u :A1 in one or all the components F$T,, , H”+l l,m+l~ Ht&?, at the plasma-vacuum 
interface depending on the form of the boundary. 

The conservative property of this scheme has been checked on the mass, in- 
cluding smoothing, without source terms. The difference obtained was: 
dm N 5.7 lo3 after 200 timesteps (dt = 15~s) for an initial mass m = 4.09 10i5. 

A 50 x 50 square mesh has been chosen with plasma filling the 5-point left 
corner as shown on Fig. 1, for starting the computation. 
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As pointed out by Richtmyer 114, p. 3661 instabilities show up in regions of 
rapid change of the flow. 

In this model, these instabilities occur near the center of the plasma. So a 
smoothing technique reported by Lapidus [19] has been used in this study. This 
technique can be seen as the fractional step of the ditrusion equation 

This parabolic equation can be then written in the numerical form: 

Where the operators 6, , 6, stand for now for the mean odd central differences 
defined as follows: 

&f(x) = [f(x + h) -0 - w2* 

Variables Value Units 

Nil 
NW 

N min 

VO 

VI 
TO 
EC 

to 
4 
At 

A0 
Ar 

%I 

Yo 

Yl 

% 

h 

1021 

5 10a* 

8 10’6 

1.5 106 

1.5 106 

2 106 

5 10’8 

15 

7.5 

7.5 10-a 

2 lob 

10-z 

3 10’4 

10-e 

10-n 

3 10-17 

8 1O-4 

nb/cmS 

nb/cm* 

nb/cms 

cm/s 

cm/s 

“K 

erg/s 
ns 

IlS 

ns 

gauss 

cm 

cgs 

cgs 

cgs 

cgs 

cgs 

FIG. 2. Initial values and data in C.G.S. units 
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The smoothing technique of Lapidus consists to take the values UEf’3 as the final 
values at time n + 2. 

All the data used to initiate the calculation are displayed on Fig. 2 with C.G.S. 
units. They have mainly been taken from the reports [9, 21-231. The calculus has 
been stopped after 1500 steps with a 7.5 ps timestep. 

0 .os .10 .,%I .I0 

1110.17 II..*.. radial position (cm) 

FIG. 3. Profile of particle number in the plasma at time 22.5 nsec. 

5SI/I4/4-5 
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RESULTS 

It is quite difficult to display all the output values of this code, so we only show 
the set of figures concerning the output values obtained at the last timestep. 

Figures 3, 4, and 5 represent respectively the profiles of particle number, tem- 
perature and electric field, then Figs. 6 and 7 show the velocity and magnetic fields. 
In Figs 8 and 9 we have the particle number and the kinetic energy of the plasma 

radial position (cm) 

FIG. 4. Profile of temperature in the plasma at time 22.5 nsec. 
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versus time, the last figure show by order of magnitude: the energy created by the 
laser and totally absorbed in the plasma, the thermal and kinetic energies of the 
plasma versus time. 

If we look at Fig. 3, we see that the plasma has expanded approximately four 
times farther in the radial direction than the axial direction, this is rather surprising 
from a physical point of view. One can explain this fact by noticing that the Dirac’s 
source term does not depend on the z direction. Consequently, this source term 

II I 
“. .” ._ ..” .a, .zu .II .10 

radial position (cm) 

D 

FIG. 5. Profile of the electric field E. throughout the mesh. 



oscillations in the velocity and magnetic fields in the plasma (Figs. 6 and 7). 
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imposes a strong gradient in the radial direction only so that we have mainly a 
cylindrical expansion of the plasma. However this expansion decelerates at about 
12 nsec and even decreases until the time 20 nsec for increasing again as shown on 
Fig. 9. 

The other features which are puzzling are the regular pattern of Fig. 7 and the 

.OI .I0 .10 

radial position (cm) 

Fro. 6. Velocity field in the plasma at time 22.5 nsec. 
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strongly coupled together at the end of the calculation giving the regular pattern 
shown on Fig. 4. 

This undesirable feature is a common problem to all numerical schemes with 
independant meshes, this problem has been also studied in a paper to be presented 
by Hirt and Amsden [20]). So these two independant meshes should be linked 
together if we want to avoid the apparition of two velocity fields. This can be done 

FIG. 8. Particle number in the plasma versus the time. 
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by the viscosity since the terms introduced at the second step (9) coupled the two 
meshes. 

Unfortunely the physical value of the viscosity is too small for having any 
effect on the numerical values and the oscillations have the time to build up 
progressively through the computation before the temperature is high enough‘ to 
begin to couple the two meshes. So we choose a value of the constant Kg = 3.10-l’ 

Time (I-IS) 

FIG. 9. Kinetic energy in the plasma versus the time. 
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about 20 times greater than the physical value with a sensible improvement in the 
results. However the final results presented here show that the value of the viscosity 
is not great enough to couple efficiently these two meshes. 

One can still increase the value of the viscosity or use another approach suggested 
by Hirt and Amsden [20] which can be applied at each time step or periodically 
in order to remove the undesirable oscillations. 

Time (IIS.) 

FIG. 10. Kinetic, thermal, and source energies in the plasma versus the time. 
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This method consists to keep more in line the velocity at a vertex (I, m) with the 
velocities of the other mesh at neighboring vertices with the relation: 

This has not been yet tried in this code. It is the opinion of the author that one 
should avoid the use of numerical schemes with independant meshes which are 
always troublesome. 

One can use instead the two-step Lax-Wendroff scheme described by Lapidus 
[19] or apply a splitting technique [17]. 
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